Parametric Functions

Objectives: Review parametric functions; Perform differential Calculus operations on parametric curves.

Definition of Parametric curve:

Ex 1. Sketch the curve described by the parametric equations

 $x = t^2 - 4$ and $y = \frac{t}{2}$, $-2 \le t \le 3$.

Ex 2. Finding a rectangular equation that represents the graph of a set of parametric equations is called **eliminating the parameter**.

$$x = t^2 - 4$$
 and $y = \frac{t}{2}$, $-2 \le t \le 3$.

Ex 3. Eliminate the parameter.

a. $x = 2\cos t \ y = 2\sin t \ 0 \le t \le 2\pi$ b. $x = \sqrt{\frac{t}{2}} \ y = t - 3$

Smooth curve:

Parametric form of the derivative:

Ex 4. Find dy/dx for the smooth curve given by x =sin(t) and y=cos(t). Then find the equation of the tangent at $\frac{\pi}{4}$

Second derivative:

Ex 5. Find the second derivative in terms of t if $x=t-t^2$ and $y=t-t^3$

You try. Graph indicating the direction traced. Find the slope and concavity at the point (2,3)

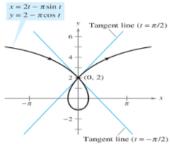
$$x=\sqrt{t} \quad y=\frac{1}{4}(t^2-4)$$

You try Graph indicating the direction traced. Find where the graph has a horizontal tangent. Then find where the second derivative is 0 or undefined.

 $x = t^2 - 5$ $y = 2 \sin t$ $0 \le t \le \pi$

The **prolate cycloid** given by crosses itself at the point (0, 2), as shown. Find the equations of both tangent lines at this point.

 $x = 2t - \pi \sin t$ and $y = 2 - \pi \cos t$



This prolate cycloid has two tangent lines at the point (0, 2).

For the cycloid defined by x= tsin(t) and y =1-cos(t), determine the concavity at t = π